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Centrosymmetric  and Non-Centrosymmetr ic  Structures 
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:New statistical formulae, which make use of the probability distribution function for the normalised 
structure amplitude, have been developed and are shown to be very efficient in distinguishing 
between centrosymmetric and non-centrosymmetric structures. The effect of the presence of one and 
two heavy atoms in the unit cell on these distribution functions is discussed theoretically and the 
results are also verified experimentally. Tables and curves of these theoretical distribution functions 
are also given. 

1. Introduct ion 

In a recent short paper, the authors (Ramachandran 
& Srinivasan, 1959) have suggested a new method 
for distinguishing between centrosymmetric and non- 
centrosymmetric structures. The method consists in 
using the probability distribution function for ampli- 
tudes instead of intensities and in using the actual 
distribution function P(y) dy, i.e., the probability that  
the quantity y=IFI/V(I) lies between y and y+dy, 
rather than the cumulative distribution function as 
has been adopted by earlier workers (Howells, Phillips 
& Rogers, 1950). The distribution function cP(y) and 
~rP(y) for centrosymmetric and non-centrosymmetric 
structures are very different in shape (see equation 
(3) and (4) below). They were tested in a few cases 
and were found to be decidedly superior to the earlier 
N(z) function. However, when the structure contained 
a small number of heavy atoms in addition to a large 
number of light atoms, the observed distribution 
deviated significantly from the theoretical function. 
The present paper is concerned with a detailed test of 
the new formulae. The theory is extended to the case 
when a small number of heavy atoms (one or two) is 
present in the structure. The essential formulae for 
the one-atom case have been developed by Sim (1958a) 
although he worked out only the form of the function 
hr(z). In this paper the effect on the function P(y) is 
discussed. The two-atom case has also been considered 
by Sim (1958b) but the final formula is given in the 
form of an integral. Here the distribution function 
P(y) is itself evaluated numerically, but the procedure 
is rather different from that  used by Sim. 

I t  may be interesting to summarize briefly the 
previous work in this field. The problem of intensity 
distribution in the resultant of n vibrations of equal 
amplitude was considered by Lord Rayleigh (1880). 
Its close relation to the problem of 'random walk' 
in one and two dimensions was also pointed out by 
him (Rayleigh, 1920; see also Chandrasekhar, 1943). 
If the steps are restricted to one dimension, namely 

either forward or backward along the same line, we 
have the analogue of a centrosymmetric crystal where 
the phase can only be 0 or ~. If the steps can be in 
any direction in a plane, then we have the analogue of 
a non-centrosymmetric crystal. That the problem of 
distribution of X-ray intensities is basically related to 
the random-walk problem has been pointed out by 
Karle & Hauptman (1950). The functions cP(y) and 
arP(y) are implicit in Rayleigh's formulae. In fact, 
using an optical analogy Ramachandran (1943) found 
that  the distribution of intensity in the scattering of 
light by a cloud of particles agreed closely with the 
predicted distribution. 

Wilson (1949) derived the distribution functions 
using the central.limit theorem but most of his for- 
mulae deal essentially with intensities. More recently 
Karle & Hauptman (1953) and Hauptman & Katie 
(1953) have developed a more complete theory in 
which the functions assume the form of a series con- 
taining higher-order terms. Wilson (1949) suggested 
that  the ratio of the square of the mean amplitude 
to the mean-square amplitude may be used to test 
for the presence of a centre of symmetry, as this ratio 
has values 0.785 and 0.637 for non-eentrosymmetrie 
and centrosymmetric structures. Later, Wilson (1951) 
also suggested the use of the variance of intensity viz., 
((z--1) 2) where z=I/(I), for the purpose, this having 
values 1 and 2 respectively for the two cases. How- 
ever, it must be mentioned that  a detailed comparison 
of the observed P(y) with theory includes~ in effect, 
all these tests. 

The effect of some of the atoms occupying special 
positions, and of groups of atoms having a symmetry 
not utilized by the space group, have been considered 
by various workers (Wilson, 1950a, b; Rogers, 1950; 
Lipson & Woolfson, 1952; Rogers & Wilson, 1953; 
Hauptman & Karle, 1953; Karle & Hauptman, 1953; 
Herbstein & Schoening, 1957). These will not be con- 
sidered further in this paper. The distribution fm~ction, 
when the number of atoms in the unit cell is small, 
does not appear to have been worked out system- 
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atically,  a l though it  appears tha t  they  could be ob- 
ta ined  from the work of H a u p t m a n  & Kar le  (1953). 
A similar  d i f f icu l ty  occurs when the structure con- 
tains a small  number  of heavy  atoms whose contribu- 
t ion to the in tens i ty  is predominant ,  a l though the 
total  number  of atoms is large. I t  is proposed to work 
out in this  paper  only the cases when there are one 
or two heavy  atoms in addit ion to a large number  of 
l ight  atoms. The s i tuat ion when the number  of atoms 
is more t han  two, but  still  small, will be considered 
later.  

2. T h e  n e w  s ta t i s t i ca l  t e s t  

If  the in tens i ty  I of each reflexion is expressed as a 
fract ion of the local average <I>, the probabi l i ty  
d is t r ibut ion functions assume the form 

NP(z)dz = exp (-z)dz (1) 

1 
cP(z)dz - (2~rz)½ exp (-½z)dz , (2) 

where z=I/<I> and P(z)dz represents the probabi l i ty  
tha t  z lies between z and z + dz. The subscripts _N and  
C refer to non-centrosymmetr ic  and centrosymmetr ic  
structures respectively. 

If  we modify  these probabi l i ty  functions such tha t  
the a rgument  is y=z½ we obtain, 

NP(y)dy=2y exp (-y2)dy (3) 

cP(y)dy=(2/z)½ exp (-y~/2)dy (4) 
where 

y--=z½=12"1/l/<I>---=2"/er (say) .  (5) 

As was pointed out in the pre l iminary  report, the  

funct ion P(y) is superior to N ( z ) =  P(z)dz for 
0 

dist inguishing between eentrosymmetr ic  and non- 
centrosymmetr ic  structures, since the functions cP(y) 
and  NP(y) for the two eases are very  different in shape:  
the  former starts  from a finite value at  y = 0  and 
gradual ly  decreases with increasing value of y, while 
the la t ter  starts  from zero for y = 0  and  increases 
in i t ia l ly  reaching a m a x i m u m  at y=0 .707  and  de- 
creases for fur ther  increase in the value of y. However, 
the above expressions (3) and (4) for the funct ion are 
val id only if all  a toms are alike. Actual ly  it  can be 
shown (from the central  l imit  theorem) tha t  they  would 
still  be val id  even if the atoms differ widely in scat- 
ter ing power provided the number  of atoms of each 
type  is large (say more t han  5 or 6). 

On the other hand  if there are just  one or two heavy  
atoms in the structure whose contr ibut ion to the total  
scattering is appreciable,  then  the shape of the two 
functions is appreciably  altered. However, the way  
in which the shape is changed cannot be readi ly  
predicted by  qual i ta t ive  arguments .  For instance, we 
know tha t  a group consisting of just  one or two atoms 
mus t  necessarily be centrosymmetr ic  whether  the 

crystal  is so or not. So it  would appear  tha t  the oc- 
currence of such a group should alter ~vP(y) more t han  
cP(y). Actual ly  it  is found to be the other way round, 
as will be seen from the following sections. The reason 
for this is tha t  for both the one and two-atom cases 
the m a x i m u m  of P(y) occurs at  a f inite value of y 
as in ~vP(y) and not at  y =  0 as in cP(y) and hence the 
former is modified less t han  the latter.  

We shall  consider the two cases in detai l  in the next  
two sections. 

3. One  h e a v y  .atom in the  un i t  cel l  

The notat ion used is as follows: The structure factor 
for the composite structure is denoted by  F and  can 
be expressed as the vector sum 

2' = 2"1 + 2"2, (6) 

where 2'1 and F2 are the contributions due to the l ight  
and  heavy  atoms respectively. The average intensi ty,  
which is identif iable with fl_:f~ (Wilson, 1949), is 

] 
denoted by  a2 and for convenience this quan t i ty  is 
normalised to uni ty .  Thus, 

(r 2 = a~ + (r22 = 1 ,  (7) 

a~ and a22 being the normalised mean-square  values 
of the l ight  and heavy  atom contributions. 

When  the structure contains one heavy  atom only, 
the origin m a y  always be chosen on the heavy  a tom 
itself. The remaining atoms (say m in number)  m a y  be 
cent rosymmetr ica l ly  arranged in groups m/2, with  
respect to the heavy  atom, leading to a centrosym- 
metr ic  structure,  or m a y  be completely non-centro- 
symmetr ic ,  giving rise to a non-centrosymmetr ic  
structure.  The dis t r ibut ion functions for these cases 
have been obtained by  Sire (1958a, b). The funct ion 
P(y) m a y  be obtained from his results and  it takes the 
following forms : 

1NP(y) dy 
=2y/(~ exp _ [(y2+ (l~)/(~]Io(2y(~2/a~)dy (8) 

1 oP(y) dy 
2 9 - - (2 / (ga~))½exp-[ (y2+ a2)/(~[]cosh(y(I2/(~)dy, (9) 

where Io(x) is the zero order Bessel funct ion wi th  
imaginary  a rgument  (Watson, 1944, p. 77). The sub- 
scripts 1N and  1C indicate tha t  they  refer to a non- 
centrosymmetr ic  and centrosymmetr ic  crystal  with 
one heavy  atom in the structure. 

4. T w o  heavy  a t o m s  in the  uni t  cel l  

4.1. The two-atom distribution 
In  order to arrive at  the probabi l i ty  dis t r ibut ion 

functions for a s tructure which contains two heavy  
atoms in addi t ion to a large number  of l ight atoms, 
we shall  first work out the funct ion for a s tructure 
which contains only two heavy atoms and consider 
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later how the s tandard distributions (3) and (4) are 
altered by  the introduction of the two heavy atoms. 
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Fig. 1. P robab i l i t y  d is t r ibut ion  funct ion  for (a) cent rosym-  
metr ic  and  (b) non-cen t rosymmet r i e  s t ruc tures  containing 
two  h e a v y  a toms.  The n u m b e r  close to each curve  
denotes  the  va lue  of a~. 

Let the unit cell contain two atoms of equal scat- 
tering power f. In such a case we may always take 
the origin midway between the two atoms, so that the 
structure factor can be written as 

F = 2 f  cos O, (10) 

where 0 - 2 ~ S . r ,  where S is the reciprocal vector of 
the reflection and r is the position vector of one of the 
atoms respectively. If the atoms are in general posi- 
tions, 0 can be considered to be a random variable, 
resulting in 

P(O)dO=CdO , (11) 

where C is a constant. The probabili ty function for 
can therefore be writ ten as 

P(F) dF= CldO/dFI dF . (12) 

Since [dF/dO[=12fsin 01 we have, by eliminating 0 
from (12) 

P ( F ) d F =  C(4f 2 -  F2) -½ dF . (13) 

Since the probability tha t  IF[ lies between IF l and 
]F l +d[F l is twice the probability tha t  ~' lies between 
~" and F + dF we get 

2C 
P(IF[)d[FI = ]/(4fe_2,2 ) dlFI.  (14) 

In terms of the normalised structure amplitude y--  
IF[/a we get, since a~=2f  2, 

2C 
P(y)dy = - -  dy (15) 

V ( 2 - y  2) 

and normalisation gives the value of C to be 1/~. Thus, 

2 1 
~P(y)dy = ~ ]/(2_y2) gy ,  (16) 

where the subscript 2 has been used to denote tha t  it  
refers to a set of two heavy atoms. A graph of eP(y) 
versus y is shown in Fig. l(a) (curve marked 1.0). 
The curve starts at  V2/~ at y = 0  and continuously 
increases reaching infinity at y =  ]/2. I ts  real part  is 
zero beyond y =  V2, so tha t  the probabili ty function 
can be taken to be zero. 

4.2. Combination of distributions 
(a) Centrosymmetric case.--VVhen the structure con- 

tains a sufficiently large number of similar light atoms 
and also two heavy atoms in the unit  cell, it is obvious 
tha t  the resultant distribution will deviate more and 
more from the standard distributions (3) and (4) with 
increasing proportion of the heavy-atom contribution. 
In the limiting case when the two heavy atoms alone 
are present, the distribution will obviously be as 
given by (16). We shall first work out the distribution 
when the composite structure is centrosymmetric. 

Writing 
F = F1 Jr F2 (17) 
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it  will be seen tha t  2,~ and F2 c a n  be considered to 
be random variables. Again, since the contribution to 
2, by the light atoms is independent of the presence 
of the heavy atoms, we can write 

f 2cP(2,) = 2P(2,2)cP(2,-2,2)dFg.. (18) 

The probabili ty function for 2, can therefore be ob- 
tained by evaluating the convolution integral (18) and 
to do this, the expressions (3), (4) and (16) have to 
be recast in terms of the structure factors. Using the 
appropriate subscripts we get from (4) 

ce(IFll)dl2,11 = 1 ( 2 / ~ ) ½  exp (-12,112/(2(~))dlF~l. (19) 

Since the probabili ty tha t  F~ lies between 2,~ and 
2,1+dF1 is half the probabili ty that  [F~] lies between 
12,11 and 12,~[+dlFll we get 

cP(2,~)d2,~= l/(27~a~)½ exp -(F~/(2a~))d2,~ . (20) 

Similarly (16) gives 

~P(F2)dF~= 1/(ze(r2~2).l/(1-2,~/2a~)½dF2. (21) 

These have to be substi tuted in (18) to get the function 
2cP(F), twice the value of which gives the required 
2cP(y), since a =  1. 

(b) Non-centrosymmetric ease.--Since the contribu- 
tion to 2' from the two-atom group is always real, 
though the structure is non-centrosymmetric, we can 
write in the present case 

2 , = F ' + i F " = ( F ~ + F 2 ) + i F ~ ' .  (22) 

From (3) we get 

~vP(IFll)dlFII = 2IF1]/ (r~ exp - (12,~12/ (r~)dlF~[ . (23) 

Since the probability that  IF1] lies between [2,1[ and 
IF~I+dIFxI is equal to the probability that  the ter- 
minus of the vector 2,1 lies within an annulus of inside 
and outside radii IFll and 12,11 +dlFxl, we get 

~vP(IF~])dIFll = ~P(F~)dA1, 

where dA1 is the element of area in the plane in which 
F1 lies and whose magnitude is 2~]FI[d]F1]. Hence 
we get, 

~vP(F~)= ~vP([Fll)/(2~IF~[) = 1/(za~) exp (-IFI[~/a~).  
(24) 

This can again be written as a joint probability distri- 
bution in the two-dimensional space defined by 2,~' 
and F~' in which dAl=dF~dF'l' .  Thus 

~vP(F~) dA1 = 1/( ~ ~ )  exp - [F;~ + 2,~,2/a~] dA 
=[1/(~a~)½ exp (-F/2/a~)]  

' ~ 2  2 t , ~  x[1/(za~)½ exp (--2,~ /al)]dF~dF~. (25) 

As regards the component F2, which does not have an 

imaginary component, we can circumvent the dif- 
ficulty by writing 

t t !  ! e t  

2P(Fg.)dA2=2P(F2)(5(F2 )dF2dF~ , (26) 

where (~(F~') is the delta function, i.e., 

6(F~')=0, 2,'2' 4 0  
t !  

= 1 ,  2,2 ----0 
and 

f 
o o  t t 

(~(F~') d2,2 = 1 . 
- -  0 0  

The convolution integral (18) takes the form 

9.~P(2,) = 9.P(2,2) NP(2,-- 2,2) dA2 
- - ( N 3  

I S 2 ' '  ] ; = 2P(F2)NP(F1)dF2 ~vP(F ),  (27) 

where NP(2,~) and lvP(F~') denote the two factors in 
expression (25). 

The separation of the real and imaginary compo- 
nents, F '  and F "  of 2, makes the computation easy. 

Finally, 
2NP(y) = 2~]FI 2NP(F). (28) 

4-3. Nature of the probability distribution curves with 
heavy atoms 
Figs. 2(a) and (b) exhibit the shape of the curves 

(8) and (9) for different values of the heavy-atom 
contribution (a~=0.5, 0.75 etc.). When a~--0 (i.e., 
a~ = 1), it will be noticed that  the formulae (8) and (9) 
reduce to the standard equations (3) and (4) as ob- 
viously they should. I t  is interesting to note tha t  
while the standard distributions (3) and (4) for centro- 
symmetric and non-centrosymmetric structures are 
quite dissimilar in shape the distributions for a strut-  
ture containing one heavy atom for both centro- 
symmetric and non-centrosymmetric arrangements 
tend to be more and more similar with increasing 
heaviness of the atom. 

The functions 2cP(y) and 2NP(y) were evaluated 
numerically and are shown in Figs. l(a) and (b). The 
theoretical curves for the centrosymmetric case were 
computed for different percentage contributions of the 
heavy atoms namely, for a~=0.9, 0.75 and 0.5. I t  
will be seen from Fig. l(a) that  computation for still 
smaller values of a~ is unnecessary since even for 
a~=0.50 the curve practically coincides with cP(y). 
In  the non-centrosymmetric case calculations showed 
that,  even for a large contribution from the heavy 
atoms, the shape of the 2NP(y) is not very much dif- 
ferent from the standard !vP(y) curve, the general 
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Fig. 2. Probability distribution function for (a) centrosymmetric and (b) non-centrosymmetric structures containing 
one heavy atom. The number close to each curve denotes the value of a~. 

Table 1. 1Vumerical data for distribution functions 

FUNCTION Cp (y  ) ICP(~)  2C p (~,) N i::)(~) ] Nl:::) (,y) 

0 -0  0 .50  0 -75  0 .90  0 .50  0 .68  0 .75  0 .90  1 .00  0 .0  0 .50  0 .75  090  

2N p ('~') 

~.  • 
O68 075 0 .90  

0 -0  0 .798  0 .685  0 .356  0 .028  0 .726  0 .646  0 .587  0 .490  0450  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  0 .000  

0.1 0.794 0.685 0.370 0.040 0.724 0.647 0.589 0.492 0.451 0.198 0.147 0043 0.000 0.184 0192 0.256 

0.2 0-782 0.684 0.4 Jl 0,079 0.718 0.651 0.596 0.498 0.460 0.384 0.294 0.I05 0.003 0-354 0.364 0.445 

0.3 0-762 0-683 0.473 0-155 0.710 0-655 0-607 0-509 0.46 1 0.548 0.438 0.201 0.015 0.504 0.508 0-548 

0.4 0.736 0.680 0.549 0.282 0.696 0.660 0.621 0.525 0.469 0.682 0-575 0.341 0.056 0-625 0-612 0-584 

0.5 0.704 0.672 0.629 0,465 0.679 0.662 0.634 0-549 0.481 0.779 0.700 0.523 0.i76 0.717 0.681 0.586 

0.6 0-666 0.66 [ 0.703 0.687 0.657 0-660 0446 0"581 0.497 0.838 0802 0.735 0-42 6 0-784 0.736 0-589 

0.7 0.625 0.643 0.76L 0.927 0.630 0.653 0.653 0.62l 0.5[8 0858 0.868 0.937 0-834 0-833 0.783 0-617 

0.8 0-579 0.618 0-794 [.133 0.598 0.638 0.652 0-667 0.546 0-845 0-899 [-097 1 327 084 1 0-800 0-650 

0-9 0.532 0.587 0-800 [.250 0.561 0.614 0.64L 0.712 0.584 0.801 0-896 1 -170  1-715 0.834 0809 0-724 

1"0 0.484 0.549 0.767 1-245 0-521 0.581 0.619 0.745 0.G37 0.736 0.846 1.153 1.80 | 0-803 0-798 0-803 

I'{ 0'430 0'505 0'715 I'I04 0'478 0'539 0'583 0"752 0'715 0"650 0"709 1'039 1'541 0'752 0.769 0.87J 

1.2 0-389 0,457 0"640 0.941 0.433 0"491 0.537 0"723 0.851 0"569 0-665 0.861 1.075 0.674 0.708 0-~80 

1-3 0-343 0.408 0-545 0-643 0-386 0.43l 0-480 0-654 1-144 0-48l 0-559 0-663 0.612 0-575 0.615 0-817 

1.4 0-299 0-356 0"450 0.461 0-339 0-379 0.418 0"552 3. t84 0"395 0.449 0.504 0-174 0.467 0.503 0-647 

1.5 0-259 0.304 0-358 0.259 0.293 0.321 0-352 0"432 ~ 0-315 0.338 0.307 0-I08 0-362 0-389 0.454 

0.]57 0-250 0.265 0.287 0-311 ~I~ 0.246 0.252 0.175 0.034 0-272 0.283 0-264 
1.6 0 -222  0 .256  0 .272  

0 .190  0 .178  0 .104  0 .009  0 .183  0 -189  0 -133 ,  1.7 0-18 8 0 .214  0 -19  9 0 .070  0 .209  0 .2  t3 0 . 227  0 -205  z 

| -8" 0 -158  0 -171  0 "137  0 .036  0 ,172  0 -167  0 .173  0 ,124  > 0 .140  0 ,119  0 .049  0.002 0-I 2 2 0.I I 5 0 .050  
a 

[ . 9  0 -131  0 "136  0 "090  - -  0 "139  0 -128  0 "127  0 "068  ~) ~) 0 "103  0 "075  0 -023  - -  0 -075  0 "068  0 -016  

2 -0  0 -108  0 .105  0 .054  - -  0 . 111  0 .094  0"091  0 -034  ~- >" U ~ 0 "072  0 "044  O .O lO  --  0 -045  0 "0  36  0 "005  

2-I 0.088 0-094 0.038 -- 0.087 0.068 0"062 0.016 Z 0.050 0.025 -- -- -- -- -- 
u. 

2"2 0-07 I 0-080 0"02 6 -- 0-067 0.048 0-041 0.006 0-035 0"015 . . . . .  

2-4 
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tendency  being to shift the whole curve in the positive 
direction of the x-axis. The calculations were made  
for a~ =0.68,  0.75 and 0.90 and the results are shown 
in Fig. l(b). 

Here again it  will be noticed tha t  the two curves 
21vP(y) and ~cP(y) become more and more similar  with 
increasing heaviness of the atom. However, the original 
curves, name ly  lvP(y) and cP(y), are not so strongly 
modif ied in this case as in the one-atom case for the 
same proportion of the heavy  atom contribution. 
This  shows in a general  way  tha t  if the number  of 
heavy  atoms is more t han  two, the actual  dis t r ibut ion 
functions would approach NP(y) and cP(y) closer and  
closer, with increase in the number  of heavy  atoms. 

The numerica l  da ta  for the various functions are 
given in Table 1. 

5. Comparison of theory with experimental data 

5.1. Computation of the experimental curves 1.o 

A number  of structures, for which the exper imenta l  0.8 
da ta  were available,  was used in test ing the above o.6 
theoretical  curves. The method  of calculat ing the 
funct ion P(y) from the observed da ta  was as follows. 0.4 
The reflexions were grouped into regions of sin 0 o.2 
name ly  0 to 0-2, 0.2 to 0.4, etc. and  in  each range the 
local average in tens i ty  <I> was determined.  This was 
assumed to be the same for all the  reflexions in the 1.0 
par t icular  group and  the values of IFI/V(I>=y were 0.8 
computed.  The number  of reflexions having  values of 
y between y and  y + d y  were de termined and from 0.6 
these the value of the funct ion P(y) at the midpoints  o.4 
of the ranges was calculated. 

Moreover for stat ist ical  reasons the reflexions with o.2 
sin 0 less t han  about  0.2 were neglected. I t  was, in 
fact, observed in a number  of cases tha t  in this region 
the  observed values of (I> did not fit  well with the 
theoretical  mean,  namely  2." f~.. 

1 
The above method  of computat ion was found to 

suffice pract ical ly  for all  cases. However, the assump- 
t ion tha t  (I> was the same for all  reflexions in a 
par t icular  range seemed to be ra ther  too drastic an 
approximat ion,  par t icular ly  in cases where the varia- 
t ion of ( I )  wi th  sin 0 was too rapid  and  also when 
the  total  number  of reflexions was small.  In  those 
cases it  was found bet ter  to use the value of (I> for 
each reflexion from a graph of , ~ f~  versus sin 0. 

J 
Whi le  calculating the values of ag. for the heavy-  1.0 

a tom compounds the effect of the var ia t ion of f with 0 0.8 
should be taken  into account. If  the tempera ture  factor 
is assumed to be the same for all a toms the values of o.6 
a~ and a~ are given by 0.4 

ffl 2 2 0"2 
(.X f H /.X f] ) " a~ 2 2 = , = ( . X f L / - - ~ Z ) ,  

zz j Z j 

where 

2 : f~  = 2 : f ~ +  2 : f ~ .  j B L 

Consequently,  the value of a~ will invar iab ly  increase 
with increase in the value of 0. Thus for example,  
in the case of L-tyrosine-hydrobromide the values are 
0.68, 0.78, 0.83, 0.87, 0.88 and 0.87 respectively for 
sin 0 = 0, 0.2, 0.3, 0.5, 0.7 and 0.9. Since the distribu- 
t ion curve has been averaged over all the ranges, 
the value of a 2 was also averaged over these ranges 
and only this value is quoted in the discussion tha t  
follows. 

5.2. Centrosymmetric case 
The da ta  avai lable  for the following compounds 

were examined,  a - rhamnose  monohydra te ,  3 : 3' di- 
chloro 4:4'  d ihydroxy-d iphenyl -methane ,  L-tyrosine 
hydrochloride,  L-ephedrine hydrochloride,  L-tyrosine 
hydrobromide  and p-chlorobenzene seleninic acid. The 
exper imenta l  da ta  are compared with the theoretical  
dis tr ibut ions in Figs. 3 and 4. 

L-Tyrosine hydrobromide 

• 0.9 

0"4 0"8 1"2 1.6 2.0 

1 "0r a-Rhamnose 
0"8~., m°~ °hydrate 

0 f 
0"4 

0"2 

! ; 

* Ephedrine HCI 
• L-Tyrosine HCI 
o 3:3' dichloro 4:4' dihydroxy 

_ diphenyl m e t h a n e  

0"4 0"8 1"2 1.6 2.0 

1 "0 p-Chlorobenzene 
seleninic acid 

0"8 

0"6 

0"4 

0"2 

I ; 

Fig. 3. Comparison of the experimental data with 
theoretical distributions for centrosymmetrie structures. 

cc-Rhamnose monohydrate 
1.0[ ~" 1.0 

0"8 0-~ 

0"4 0"4 

0"2 0"2 

0"4 0"8 1"2 1-6 2-0 

L-Tyrosine hydrobromide 

0-4 0"8 1"2 1.6 2.0 

Ephedrine hydrochloride 
N° 

0"4 0"8 1"2 1.6 2.0 

1"0" L-Tyr?sine hydrochloride 

0"8 t ~ . 6 8  

0"4 

0"2 

0"4 0"8 1"2 1"6 2-0 

Fig. 4. Comparison of the experimental data with the 
theoretical distributions for non-centrosymmetric structures• 
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A short  accoLmt of each of these is given below and 
details  can be obtained by  referring to original papers. 
Explana t ions  are provided only where they  are neces- 
sary. In  all  cases where a heavy  atom is present, i t  
will  be seen tha t  the exper imenta l  da ta  fit  the ap- 
propriate  curve for 2cP(y) better  t han  for cP(y). 

~-Rhamnose monohydrate.--This is a simple light- 
a tom compound (McGeachin & Beevers, 1957) the 
space group being P21. The da ta  agree well with the 
theoret ical  curve cP(y). 

3:3 ' .  DichIoro 4-4' dihydroxy-diphenyl-methane.-- 
This case is of par t icular  interest  since the N(z) test 
of Howells et al. (1950) for the [010] projection is 
reported to have led to a negat ive result  (Whittaker,  
1953). U l t ima te ly  the structure was found to have 
the  space group C2/c. The new P(y) test was applied 
to the [010] projection (Fig. 3) and there can be no 
doubt  tha t  this projection is centrosymmetric .  ~ for 
this compound is 0.65 and the agreement  is clearly 
bet ter  with the curve for ~.~ =0 .5  than  with cP(y). 

L-Tyrosine hydrochloride.--The space group of this 
compound is P21 (Srinivasan, 1956) and a~ =0.55. The 
da ta  closely fit  the curve for ~ a2 = 0.5 (See Ramachan-  
dran & Srinivasan,  1959). 

L-Ephedrine hydrochloride.--The space group is P21 
(Phillips, 1954) and (r~=0.55. Jus t  as in the last  case 
the date agree with the curve for a~=0.50. 

L-Tyrosine hydrobromide.--The space group is P21 
(Srinivasan, 1956) and a~=0.86. The effect of the 
presence of the heavy  atoms is str iking in this case 
and  the agreement  of the da ta  with the curve for 
a~ =0.90 is quite good. 

p-Cholorobenzene seleninic acid.-The space group is 
P21/c (Bryden & McCullough, 1956) and a~=0.68. 

5.3. Non-centrosymmetric case 

The data  analysed were those of the compounds 
c~-rhamnose monohydrate ,  L-ephedrine hydrochloride, 
L-tyrosine hydrochloride and L-tyrosine hydrobro- 
mide. For all these compounds the da ta  for a non- 
centrosymmetr ic  projection were available.  

I t  can be noticed from Fig. 4 tha t  in each case the 
da ta  defini tely show tha t  the projection is non-centro- 
symmetr ic  though, however, it  is not possible to say 
dis t inct ly tha t  they  follow more closely the appropriate  
curve ~lvP(y) t han  the curve NP(y). The reason for 

this  is tha t  the exper imental  da ta  seem to have  
appreciable spread and the different curves, 2NP(y), 
are not very  different from each other. 

On the other hand  for the centrosymmetr ic  case, 
the curves 2cP(y) are appreciably different  and in fact, 
for large values of a~ the curve even tends to be similar  
to lvP(y). I t  is therefore highly  impor tant ,  when 
carrying out a test, to use the appropriate  theoretical  
curve 2cP(y), whereas it m a y  not be so essential to 
choose the appropriate  2~'P(y). 

I wish to thank  Prof. G. N. R a m a c h a n d r a n  for the 
numerous valuable  suggestions he made during this  
investigation. 
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