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Test of the New Statistical Formula for Distinguishing Between
Centrosymmetric and Non-Centrosymmetric Structures

By R. SRINIVASAN

Department of Physics, University of Madras, Guindy, Madras—25, India

(Recetved 15 July 1959 and in revised form 14 September 1959)

New statistical formulae, which make use of the probability distribution function for the normalised
structure amplitude, have been developed and are shown to be very efficient in distinguishing
between centrosymmetric and non-centrosymmetric structures. The effect of the presence of one and
two heavy atoms in the unit cell on these distribution functions is discussed theoretically and the
results are also verified experimentally. Tables and curves of these theoretical distribution functions

are also given.

1. Introduction

In a recent short paper, the authors (Ramachandran
& Srinivasan, 1959) have suggested a new method
for distinguishing between centrosymmetric and non-
centrosymmetric structures. The method consists in
using the probability distribution function for ampli-
tudes instead of intensities and in using the actual
distribution function P(y)dy, i.e., the probability that
the quantity y=|F|/y{I) lies between y and y+dy,
rather than the cumulative distribution function as
has been adopted by earlier workers (Howells, Phillips
& Rogers, 1950). The distribution function ¢P(y) and
~P(y) for centrosymmetric and non-centrosymmetric
structures are very different in shape (see equation
(3) and (4) below). They were tested in a few cases
and were found to be decidedly superior to the earlier
N(z) function. However, when the structure contained
a small number of heavy atoms in addition to a large
number of light atoms, the observed distribution
deviated significantly from the theoretical function.
The present paper is concerned with a detailed test of
the new formulae. The theory is extended to the case
when a small number of heavy atoms (one or two) is
present in the structure. The essential formulae for
the one-atom case have been developed by Sim (1958a)
although he worked out only the form of the function
N(z). In this paper the effect on the function P(y) is
discussed. The two-atom case has also been considered
by Sim (1958b) but the final formula is given in the
form of an integral. Here the distribution function
P(y) is itself evaluated numerically, but the procedure
is rather different from that used by Sim.

It may be interesting to summarize briefly the
previous work in this field. The problem of intensity
distribution in the resultant of » vibrations of equal
amplitude was considered by Lord Rayleigh (1880).
Its close relation to the problem of ‘random walk’
in one and two dimensions was also pointed out by
him (Rayleigh, 1920; see also Chandrasekhar, 1943).
If the steps are restricted to one dimension, namely

either forward or backward along the same line, we
have the analogue of a centrosymmetric crystal where
the phase can only be 0 or z. If the steps can be in
any direction in a plane, then we have the analogue of
a non-centrosymmetric crystal. That the problem of
distribution of X-ray intensities is basically related to
the random-walk problem has been pointed out by
Karle & Hauptman (1950). The functions ¢P(y) and
~P(y) are implicit in Rayleigh’s formulae. In fact,
using an optical analogy Ramachandran (1943) found
that the distribution of intensity in the scattering of
light by a cloud of particles agreed closely with the
predicted distribution.

Wilson (1949) derived the distribution functions
using the central-limit theorem but most of his for-
mulae deal essentially with intensitics. More recently
Karle & Hauptman (1953) and Hauptman & Karle
(1953) have developed a more complete theory in
which the functions assume the form of a series con-
taining higher-order terms. Wilson (1949) suggested
that the ratio of the square of the mean amplitude
to the mean-square amplitude may be used to test
for the presence of a centre of symmetry, as this ratio
has values 0-785 and 0-637 for non-centrosymmetric
and centrosymmetric structures. Later, Wilson (1951)
also suggested the use of the variance of intensity viz.,
{(z—1)%y where z=1I[{I), for the purpose, this having
values 1 and 2 respectively for the two cases. How-
ever, it must be mentioned that a detailed comparison
of the observed P(y) with theory includes, in effect,
all these tests.

The effect of some of the atoms occupying special
positions, and of groups of atoms having a symmetry
not utilized by the space group, have been considered
by various workers (Wilson, 1950a, b; Rogers, 1950;
Lipson & Woolfson, 1952; Rogers & Wilson, 1953;
Hauptman & Karle, 1953; Karle & Hauptman, 1953;
Herbstein & Schoening, 1957). These will not be con-
sidered further in this paper. The distribution function,
when the number of atoms in the unit cell is small,
does not appear to have been worked out system-
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atically, although it appears that they could be ob-
tained from the work of Hauptman & Karle (1953).
A similar difficulty oceurs when the structure con-
tains a small number of heavy atoms whose contribu-
tion to the intensity is predominant, although the
total number of atoms is large. It is proposed to work
out in this paper only the cases when there are one
or two heavy atoms in addition to a large number of
light atoms. The situation when the number of atoms
is more than two, but still small, will be considered
later. ’

2. The new statistical test

If the intensity I of each reflexion is expressed as a
fraction of the local average {I), the probability
distribution functions assume the form

~P(2)dz = exp (—z)dz H
cP(z)dz = (2—71zﬁ exp (—3z)dz, (2)

where z=1I/{I) and P(z)dz represents the probability
that z lies between z and z+dz. The subscripts N and
C refer to non-centrosymmetric and centrosymmetric
structures respectively.

If we modify these probability functions such that
the argument is y=2% we obtain,

~P(y)dy =2y exp (—y*)dy 3)
cP(y)dy=(2/n)t exp (—y?/2)dy 4)

where
y=2t=|F|[{I)=F|o (say). (5)
As was pointed out in the preliminary report, the

z

P(z)dz for
0
distinguishing between centrosymmetric and non-

centrosymmetric structures, since the functions ¢P(y)
and yP(y) for the two cases are very different in shape:
the former starts from a finite value at y=0 and
gradually decreases with increasing value of y, while
the latter starts from zero for y=0 and increases
initially reaching a maximum at y=0-707 and de-
creases for further increase in the value of y. However,
the above expressions (3) and (4) for the function are
valid only if all atoms are alike. Actually it can be
shown (from the central limit theorem) that they would
still be valid even if the atoms differ widely in scat-
tering power provided the number of atoms of each
type is large (say more than 5 or 6).

On the other hand if there are just one or two heavy
atoms in the structure whose contribution to the total
scattering is appreciable, then the shape of the two
functions is appreciably altered. However, the way
in which the shape is changed cannot be readily
predicted by qualitative arguments. For instance, we
know that a group consisting of just one or two atoms
must necessarily be centrosymmetric whether the

function P(y) is superior to N(z) =S
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crystal is so or not. So it would appear that the oc-
currence of such a group should alter »P(y) more than
cP(y). Actually it is found to be the other way round,
as will be seen from the following sections. The reason
for this is that for both the one and two-atom cases
the maximum of P(y) occurs at a finite value of y
as in yP(y) and not at y=0 as in ¢P(y) and hence the
former is modified less than the latter.

We shall consider the two cases in detail in the next
two sections.

3. One heavy atom in the unit cell

The notation used is as follows: The structure factor
for the composite structure is denoted by F and can
be expressed as the vector sum

F=F,+F,, (6)

where F; and Fs are the contributions due to the light

and heavy atoms respectively. The average intensity,

which is identifiable with X f7 (Wilson, 1949), is
i

denoted by o2 and for convenience this quantity is
normalised to unity. Thus,

=0+ 05=1, (7)

ot and ¢ being the normalised mean-square values
of the light and heavy atom contributions.

When the structure contains one heavy atom only,
the origin may always be chosen on the heavy atom
itself. The remaining atoms (say m in number) may be
centrosymmetrically arranged in groups m/2, with
respect to the heavy atom, leading to a centrosym-
metric structure, or may be completely non-centro-
symmetric, giving rise to a non-centrosymmetric
structure. The distribution functions for these cases
have been obtained by Sim (1958a, b). The function
P(y) may be obtained from his results and it takes the
following forms:

18P(y)dy
=2y/ o} exp —[(y2+ 03)/ o5 1o(2y o2/ o7) dy (8)

1cP(y)dy
=(2/(no}))texp—[(y2+ 03)/ 1] cosh (yoe/oT)dy, (9)

where Io(x) is the zero order Bessel function with
imaginary argument (Watson, 1944, p. 77). The sub-
scripts 1N and 1C indicate that they refer to a non-
centrosymmetric and centrosymmetric crystal with
one heavy atom in the structure.

4. Two heavy atoms in the unit cell

4-1. The two-atom distribution

In order to arrive at the probability distribution
functions for a structure which contains two heavy
atoms in addition to a large number of light atoms,
we shall first work out the function for a structure
which contains only two heavy atoms and consider
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later how the standard distributions (3) and (4) are
altered by the introduction of the two heavy atoms.
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Fig. 1. Probability distribution function for (a) centrosym-
metric and (b) non-centrosymmetric structures containing
two heavy atoms. The number close to each curve
denotes the value of o3.
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Let the unit cell contain two atoms of equal scat-
tering power f. In such a case we may always take
the origin midway between the two atoms, so that the
structure factor can be written as

F=2fcos 0, (10)

where 0 =2zS.r, where S is the reciprocal vector of
the reflection and r is the position vector of one of the
atoms respectively. If the atoms are in general posi-
tions, 0 can be considered to be a random variable,
resulting in

P(9)d0=Cdg , (11)

where C is a constant. The probability function for
F can therefore be written as

P(F)dF =C|d6/dF|dF . 12)

Since |dF/d0)=|2fsin 0] we have, by eliminating 0
from (12)

P(F)dF =C(4f—F2)~%JF . (13)
Since the probability that |F| lies between |F| and
|F|+d|F| is twice the probability that F lies between
F and F+dF we get

C
PUF)AIF| = -2

V(4f2—F?)

In terms of the normalised structure amplitude y=
|F|/o we get, since ¢2=2f2,

d|F)|. (14)

Py = 52 (15)
and normalisation gives the value of C to be 1/z. Thus,
Ply)dy = 2ot dy, (16)

n/(2—-y?)

where the subscript 2 has been used to denote that it
refers to a set of two heavy atoms. A graph of 2P(y)
versus y is shown in Fig. l1(a) (curve marked 1-0).
The curve starts at }/2/m at y=0 and continuously
increases reaching infinity at y=)/2. Its real part is
zero beyond y=}2, so that the probability function
can be taken to be zero.

4-2. Combination of distributions
(a) Centrosymmetric case.—When the structure con-

tains a sufficiently large number of similar light atoms
and also two heavy atoms in the unit cell, it is obvious
that the resultant distribution will deviate more and
more from the standard distributions (3) and (4) with
increasing proportion of the heavy-atom contribution.
In the limiting case when the two heavy atoms alone
are present, the distribution will obviously be as
given by (16). We shall first work out the distribution
when the composite structure is centrosymmetric.
Writing

F=F +F; a7
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it will be seen that F; and F: can be considered to
be random variables. Again, since the contribution to
F by the light atoms is independent of the presence
of the heavy atoms, we can write

oP(Fo)cP(F — F2)dF: .

—00

acP(F) = S (18)
The probability function for F can therefore be ob-
tained by evaluating the convolution integral (18) and
to do this, the expressions (3), (4) and (16) have to
be recast in terms of the structure factors. Using the
appropriate subscripts we get from (4)

1
cP(|Fy])d|Fy| = ;1(2/7!)’3 exp (—|F1[2/(20D)d|F1|. (19)

Since the probability that F; lies between Fi and
Fi+dF, is half the probability that |F1] lies between
|Fi| and |F1|+d|F1] we get

cP(F1)dF1=1/2n0?)} exp —(I'%[(20%))dF: . (20)
Similarly (16) gives
2P(Fs)dFe=1/(no2)/2).1/(1 - F}/20%) dFs. (21)

These have to be substituted in (18) to get the function
2cP(F), twice the value of which gives the required
2cP(y), since o=1.

(b) Non-centrosymmetric case.—Since the contribu-
tion to F from the two-atom group is always real,
though the structure is non-centrosymmetric, we can
write in the present case

F=F +iF'=(Fi{+F,)+iF;. (22)
From (3) we get
~P(IF1|)d|F1|=2|F1/of exp — ([F1|?/ol)d|Fy| . (23)

Since the probability that [F.| lies between |Fi| and
|F1l +d}F,| is equal to the probability that the ter-
minus of the vector F; lies within an annulus of inside
and outside radii |F1| and |Fi|+d|F1], we get

~P(|F1|)d|F1|= yP(F1)d 4,

where d4; is the element of area in the plane in which

Fi lies and whose magnitude is 27|F;|d|F1|. Hence

we get,

~P(F1)= nP(|F1])/(27| F1])=1/(n0F) exp (= |F1[?]0}) .
(24)

This can again be written as a joint probability distri-

bution in the two-dimensional space defined by F,
and F;' in which d4,=dF,dF,". Thus

~P(F1)dA1=1/(70?) exp —[F}2+F{ %/ 02)d A4,
=[1/(ma})? exp (—F*/a})]
x[1/(ma})t exp (— F1?/o})]|dF dFy’. (25)

As regards the component F, which does not have an
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imaginary component, we can circumvent the dif-
ficulty by writing

oP(F2)dAs=oP(F3)0(Fy)dF;dFy

where §(F;') is the delta function, i.e.,

(26)

O(Fy)=0, Fy 0
=1, Fy=0
and

S S(Fy)dFy =1 .

— 00

The convolution integral (18) takes the form

o0

oxP(F) = S oP(F3) xP(F — F2)dAs

—00

= [ spwpwpir-Fyar;]
x [S:NP(Fi’)é(Fé’)dFé’}

_ {Slzp(pg)NP(Fi)dF;] ~P(FY), (@)

where yP(F;) and yP(F;) denote the two factors in
expression (25).

The separation of the real and imaginary compo-
nents, F' and F” of F makes the computation easy.

Finally,

onP(y)=2n|F| 2 NP(F) . (28)

4-3. Nature of the probability distribution curves with

heavy atoms

Figs. 2(a) and (b) exhibit the shape of the curves
(8) and (9) for different values of the heavy-atom
contribution (62=0-5, 0-75 etc.). When o¢3=0 (ie.,
o3 =1), it will be noticed that the formulae (8) and (9)
reduce to the standard equations (3) and (4) as ob-
viously they should. It is interesting to note that
while the standard distributions (3) and (4) for centro-
symmetric and non-centrosymmetric structures are
quite dissimilar in shape the distributions for a struc-
ture containing one heavy atom for both centro-
symmetric and non-centrosymmetric arrangements
tend to be more and more similar with increasing
heaviness of the atom.

The functions 2cP(y) and snP(y) were evaluated
numerically and are shown in Figs. 1(a) and (b). The
theoretical curves for the centrosymmetric case were
computed for different percentage contributions of the
heavy atoms namely, for ¢3=0-9, 0-75 and 0-5. It
will be seen from Fig. 1(a) that computation for still
smaller values of o3 is unnecessary since even for
02=0-50 the curve practically coincides with cP(y).
In the non-centrosymmetric case calculations showed
that, even for a large contribution from the heavy
atoms, the shape of the :xP(y) is not very much dif-
ferent from the standard n~P(y) curve, the general
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Fig. 2. Probability distribution function for (a) centrosymmetric and (b) non-centrosymmetric structures containing
one heavy atom, The number close to each curve denotes the value of o

Table 1. Numerical data for distribution functions

FUNCTION] P P 2P@ WP WPOY )

ch A N AN— - A .
y 00 0-50 0-75 0.90 050 0.68 07s 0.90 100 00 0.50 075 090 .68 075 0.90
0-0 0.798 ©.485 0.356 Q028 0726 0.646 0587 0.490 0450 0.000 0.000 ©.000 0.000 0.000 0©0.000 0.000
0.1 0.794 0.685 0.370 0040 0724 0-647 0589 0.492 0.45 0.198 0.147 0043 ©.000 ©O.184 0.192 0.256
0.2 0-782 0684 0-411 0.079 ©718 0.651 0596 0.498 0.460 0384 0.294 010Ss 0-003 0354 0364 0.445
0.3 0762 0-683 0473 0-155 O710 0-655 0607 ©O-509 0-46 | 0:548 0.4 38 0.201 0.015 0.504 0.508 0.548
(o223 0.736 C680 0.54% 0.282 0:696 0.660 0621 0525 0-469 0:682 0O-575 0-341 0056 0625 0-6i2 0-584
.5 0704 0.672 0629 0.465 0679 0.662 0.634 0549 0.481 0779 0700 0.523 0-176 0717 0.681 0586
©:6 0666 Q661 0703 0687 0657 O-660 0646 OSB8I 0.497 ©-838 0-802 0.735 0-426 0-784 0736 0©.589
o7 0-625 0:643 0761 0.927 0.630 0:653 0.653 0-.621 oS8 0-858 o-868 0937 0-834 0-833 0-783 o617
0.8 0.579 0618 0-794 [-133 ©-598 0.638 0.652 0-667 0.546 0.843 ©-899 1.097 1.327 0.84 1 0.800 0650
0.9 ©0.532 0.:587 0.800 1-1250 0561 O-6!14 0.64l o712 0.584 0801 0-896 1-170 1715 0.834 O 809 0.724
1-0 0.484 0.549 0767 1.245 ©.521 ©O:581 0619 ©-745 0©-637 0736 0.846 1153 1-80 ) 0803 0798 ©-803
1 0436 0505 0715 1104 0478 0539 0583 0752 0716 0656 Q769 1039 1-541 0752 0769 087
1-2 ©-389 0:457 0640 0.941 0-433 0491 0537 0723 0851 0569 0665 o861 1075 0-674 0708 0-880
1-3 0:343 0:-408 0545 0-643 0386 0-43! 0480 O-654 1-144 0481 0559 0663 0612 0575 0-615 0817
1-4 0-299 0356 ©0-450 0O-46f ©-339 0379 O-4 18 0552 3-184 0-395 ©-449 0504 0-174 0:467 0-503 ©.647
1.5 0-259 ©0-.304 0-358 ©:259 0-293 0.321 0-352 0432 3 0-315 0:338 0-307 o-108 0-362 ©-389 0-454
1-6 0-222 0:256 0:272 0.1§7 0.250 0265 ©.287 O-311 ;g 0:246 0252 0175 ©-034 0.272 ©0-283 0264
1.7 o-188 0:214 0-199 0:070 0.20% ©O-213 0-227 0-205 i ;‘ 0:190 o178 0-104 ©-009% 0183 O:Sl: Z;::
1-8 0O-158 0171 0137 0036 O.172 ©-.167 0:173 0O:124 > - 0140 o119 0-049% 0.002 o122 - -
9 0-131 ©:136 0090 - ©O-139 O-128 0127 0068 5 (z) 0-103 0075 ©0-023 - 0-075 0-0 68 0016
2.0 ©-108 0-105 ©0.054 — 0.111 0.094 00%1 0-034 5 E 0-072 0-044 O0.010 - 0-045 0036 ©0-005
2.1 0.088 0.094 0.038 - 0.087 0.068 0062 0O.016 g 0050 0.025 - - - - -

2

22 ©0-071 ©-080 0:026 - 0-067 0.048 0-.041 0006 0-035 0-0l5s - - - — -_
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tendency being to shift the whole curve in the positive
direction of the z-axis. The calculations were made
for ¢2=0-68, 0-75 and 0-90 and the results are shown
in Fig. 1(b).

Here again it will be noticed that the two curves
2nP(y) and 2cP(y) become more and more similar with
increasing heaviness of the atom. However, the original
curves, namely xP(y) and ¢P(y), are not so strongly
modified in this case as in the one-atom case for the
same proportion of the heavy atom contribution.
This shows in a general way that if the number of
heavy atoms is more than two, the actual distribution
functions would approach yP(y) and ¢P(y) closer and
closer, with increase in the number of heavy atoms.

The numerical data for the various functions are
given in Table 1.

5. Comparison of theory with experimental data

5:1. Computation of the experimental curves

A number of structures, for which the experimental
data were available, was used in testing the above
theoretical curves. The method of calculating the
function P(y) from the observed data was as follows.
The reflexions were grouped into regions of sin 6
namely 0 to 0-2, 0-2 to 0-4, etc. and in each range the
local average intensity <{I) was determined. This was
assumed to be the same for all the reflexions in the
particular group and the values of |F|/)/{I)=y were
computed. The number of reflexions having values of
y between y and y+dy were determined and from
these the value of the function P(y) at the midpoints
of the ranges was calculated.

Moreover for statistical reasons the reflexions with
sin 6 less than about 0-2 were neglected. It was, in
fact, observed in a number of cases that in this region
the observed values of {(I) did not fit well with the
theoretical mean, namely 3 f7 .

The above method of éomputa,tion was found to
suffice practically for all cases. However, the assump-
tion that {I) was the same for all reflexions in a
particular range seemed to be rather too drastic an
approximation, particularly in cases where the varia-
tion of (I) with sin 6 was too rapid and also when
the total number of reflexions was small. In those
cases it was found better to use the value of (I for
each reflexion from a graph of 3 f7 versus sin 6.

i

While calculating the values of oz for the heavy-
atom compounds the effect of the variation of f with 6
should be taken into account. If the temperature factor
is assumed to be the same for all atoms the values of
0% and o2 are given by

£=%ﬁ@ﬁ;ﬁ=@ﬁ@m,
where ' !

SfE=2f+2f1.
i H L
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Consequently, the value of o3 will invariably increase
with increase in the value of §. Thus for example,
in the case of L-tyrosine-hydrobromide the values are
0-68, 0-78, 0-83, 0-87, 0-88 and 0-87 respectively for
sin =0, 0-2, 0-3, 0-5, 0-7 and 0-9. Since the distribu-
tion curve has been averaged over all the ranges,
the value of o was also averaged over these ranges
and only this value is quoted in the discussion that
follows.

5-2. Centrosymmetric case

The data available for the following compounds
were examined. «-rhamnose monohydrate, 3:3' di-
chloro 4:4’ dihydroxy-diphenyl-methane, L-tyrosine
hydrochloride, rL-ephedrine hydrochloride, L-tyrosine
hydrobromide and p-chlorobenzene seleninic acid. The
experimental data are compared with the theoretical
distributions in Figs. 3 and 4.

1'0} L—Tyrosine hydrobromide o ”"fnh:,m;fﬁm
o0-8 . 0-8 c

o6 0-6 . .

o4k 0-4)

02 02 ’

0:4 018 1.'2 1.‘6 2.0 0% 08 1-2 16 20
. x Ephedrine HCI .
10 * L=Tyrosine HCI 10
0-8 © 3:3' dichloro 4:4" dihydroxy 08

. diphenyl methane
05

p~Chlorobenzene
seleninic acid

< 075

06 °
04
02

0% 08 17 16 20 0% 08 17 16 20

Fig. 3. Comparison of the experimental data with
theoretical distributions for centrosymmetric structures.

a-Rhamnose monohydrate L-Tyrosine hydrobromide

101 . 10 )

0-8t N 0-8 AR 075
oo /° 0-6 X
0-4} : 04t

02 . 0-2

04 08 12 16 20 0% 08 12 16 20

10 Ephedrine hydrochloride 1:0r L-Tyrosine hydrochloride
N * N »

0-8 0-68 0-8f 0-68

0-6f ° 061 .

0-4 . 0-4r /,

0-2f 0-2

0% 08 12 16 20 0% 08 12 16 20

Fig. 4. Comparison of the experimental data with the
theoretical distributions for non-centrosymmetric structures.
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A short account of each of these is given below and
details can be obtained by referring to original papers.
Explanations are provided only where they are neces-
sary. In all cases where a heavy atom is present, it
will be seen that the experimental data fit the ap-
propriate curve for 2cP(y) better than for ¢P(y).

x-Rhamnose monohydrate.—This is a simple light-
atom compound (McGeachin & Beevers, 1957) the
space group being P2;. The data agree well with the
theoretical curve cP(y).

3:3'. Dichloro 4-4' dihydroxy-diphenyl-methane.—
This case is of particular interest since the N(z) test
of Howells et al. (1950) for the [010] projection is
reported to have led to a negative result (Whittaker,
1953). Ultimately the structure was found to have
the space group C2/c. The new P(y) test was applied
to the [010] projection (Fig.3) and there can be no
doubt that this projection is centrosymmetric. o2 for
this compound is 0-65 and the agreement is clearly
better with the curve for 03=0-5 than with ¢P(y).

L-Tyrosine hydrochloride.—The space group of this
compound is P2, (Srinivasan, 1956) and ¢3=0-55. The
data closely fit the curve for ¢3=0-5 (See Ramachan-
dran & Srinivasan, 1959).

L-Ephedrine hydrochloride.—The space group is P2;
(Phillips, 1954) and of=0-55. Just as in the last case
the date agree with the curve for ¢%=0-50.

L-Tyrosine hydrobromide.—The space group is P2,
(Srinivasan, 1956) and o¢2=0-86. The effect of the
presence of the heavy atoms is striking in this case
and the agreement of the data with the curve for
65=0-90 is quite good.

p-Cholorobenzene seleninic acid.~The space group is
P2,/c (Bryden & McCullough, 1956) and ¢Z=0-68.

5-3. Non-centrosymmetric case

The data analysed were those of the compounds
«-rthamnose monohydrate, L-ephedrine hydrochloride,
L-tyrosine hydrochloride and L-tyrosine hydrobro-
mide. For all these compounds the data for a non-
centrosymmetric projection were available.

It can be noticed from Fig. 4 that in each case the
data definitely show that the projection is non-centro-
symmetric though, however, it is not possible to say
distinctly that they follow more closely the appropriate
curve 2yP(y) than the curve yP(y). The reason for

TEST OF THE NEW STATISTICAL FORMULA

this is that the experimental data seem to have
appreciable spread and the different curves, 2 nP(y),
are not very different from each other.

On the other hand for the centrosymmetric case,
the curves 2cP(y) are appreciably different and in fact,
for large values of 6% the curve even tends to be similar
to ~P(y). It is therefore highly important, when
carrying out a test, to use the appropriate theoretical
curve 2cP(y), whereas it may not be so essential to
choose the appropriate s xP(y).

I wish to thank Prof. G. N. Ramachandran for the
numerous valuable suggestions he made during this
investigation,
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